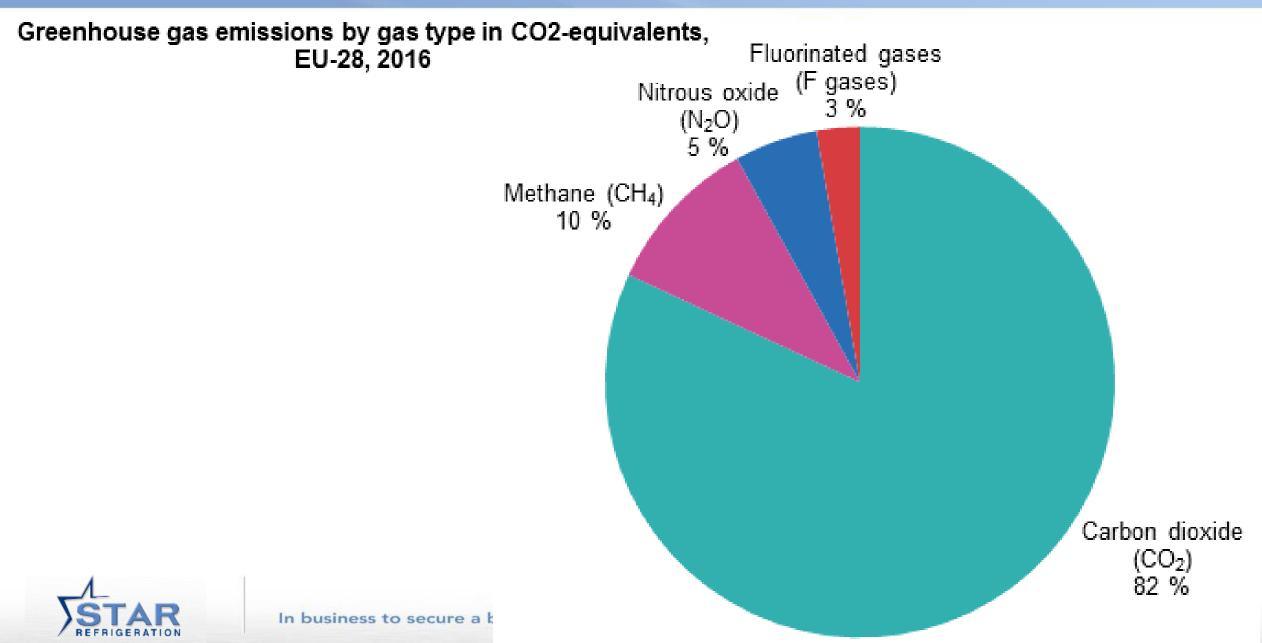
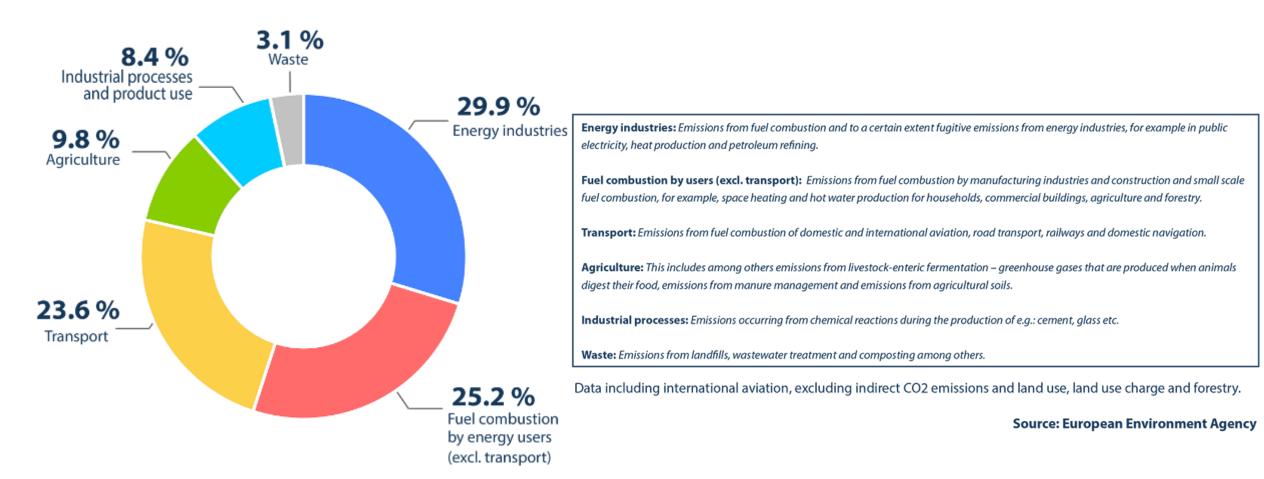
Are heat networks the answer?

David Pearson


1st question is what sort of future do we aspire to?

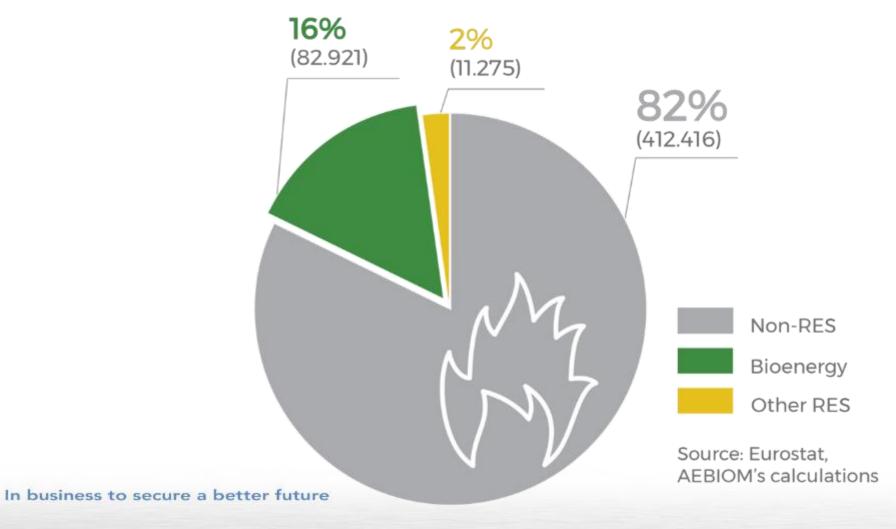
• Do we want.....



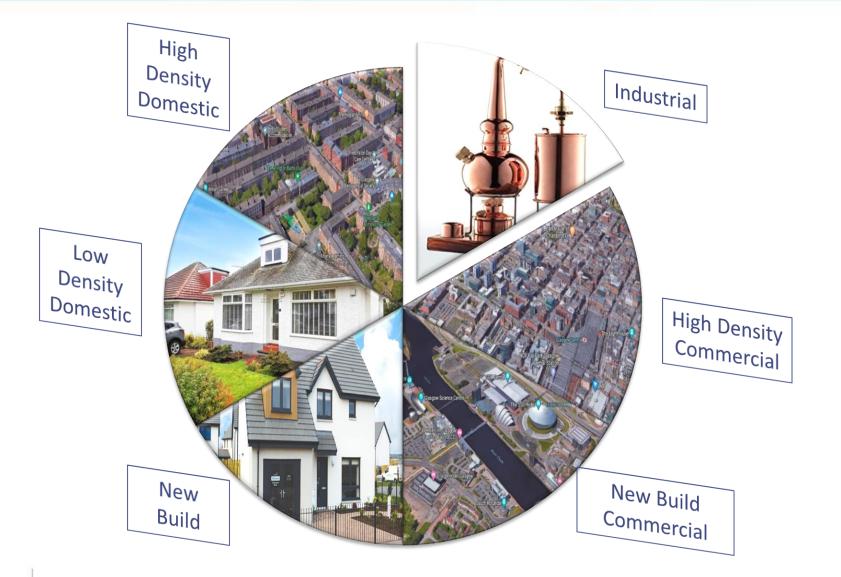
2nd question is "what's stopping that?"

3rd question is "why?"

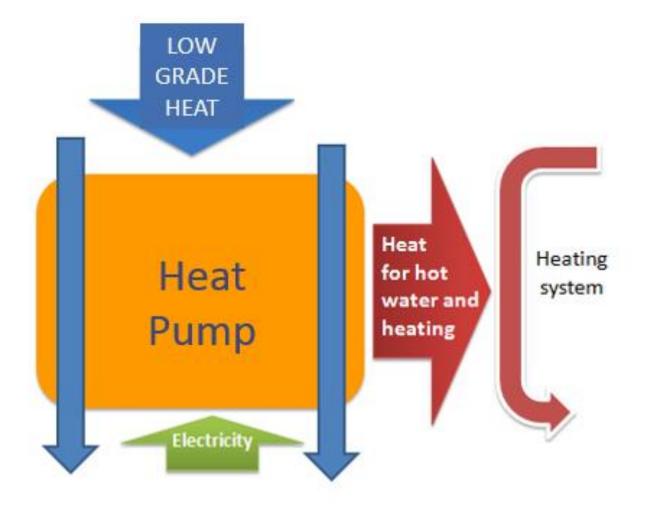
Share of EU greenhouse gas emission by source, 2015



So what portion of heat is a problem?


EU-28 share of energy from renewable sources in the gross final energy consumption for heating &

cooling (in 2015, ktoe, %)



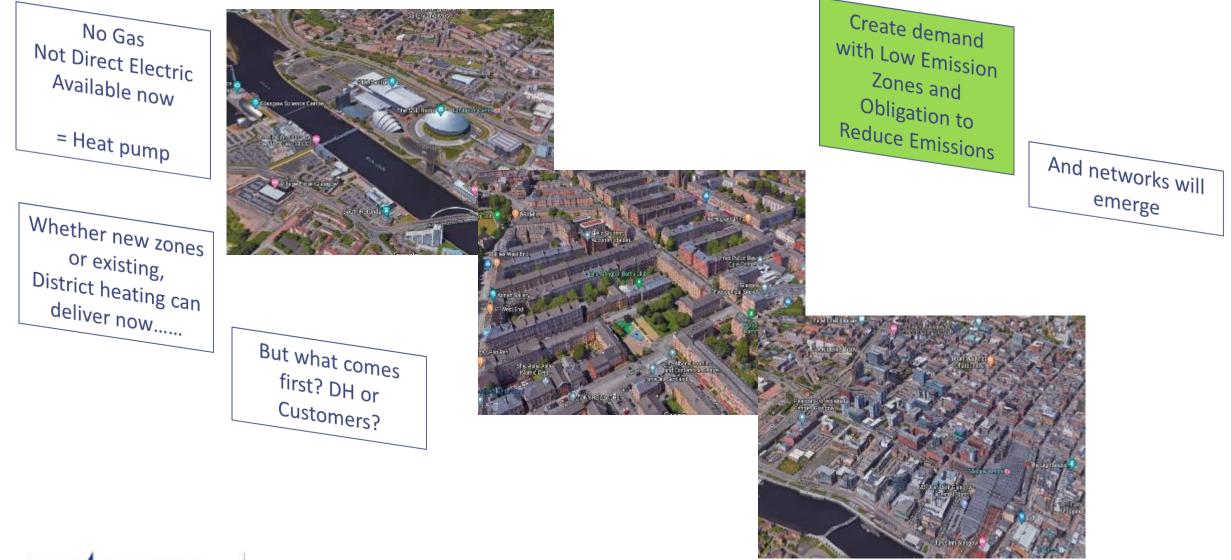
So where do we use heating?

New Build Houses – just do it!

Existing Low Density- simple but needs H.A.S. business model

Heat as Service= Investment and risk carried by 3rd party, with maximised volume in neighbourhood

Policy needs?



Industrial Heating – Heat pumps emerging at over 120C

Higher density..... = heat networks......but how

CASE STUDY: DISTRICT HEATING

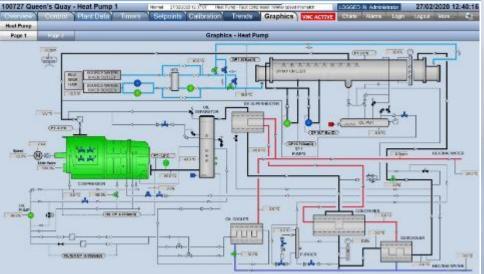
DRAMMEN (the original success in 2010)

- District heating system in Drammen, Norway
- 13.2MW water sourced heat pump
- High temp (90°C) water generated from 8°C fjord
- Proves 85% of hot water needed to heat the city
- World's largest 90°C ammonia heat pump
- Average COP of 3.05 (over 8 years running)
- Renewable energy source
- Fully natural refrigerant
- Easily repeatable technology

CASE STUDY: DISTRICT HEATING-Queen Quay-2020 Commissioning

- 5.2MW river water sourced heat pump UK's largest 80°C ammonia heat pump
 - High temp (80°C) water generated from 5°C river

- Typical COP of 3
- CO2 circa 45% of Gas and falling
 - Zero Local NOx


VITAL

CASE STUDY: DISTRICT HEATING-Queen Quay-2020 Commissioning

CASE STUDY: DISTRICT HEATING-Queen Quay-2020 Commissioning

In business to secure a better future

CASE STUDY: DISTRICT HEATING-Queen Quay – UK's Largest HT River Heat Pump

- Harnesses local energy
- Doesn't create NOx (so clean air)
- Creates local jobs
- Allows more wind generation
- Produces cooling as well
- Can use cheapest tariff
- 3 units heat for 1 unit electricity
- 2050, 2045, 2030 Ready!

BIG river source heatpumps as energy source

84013 - Clyde at Daldowie

Station info	Daily flow data	Peak flow data	Catchment info	Photo gallery
Data Series:	Gauged Daily	Flow *		
Period of Ro	cord:	1963 - 2018	Graph Type: Ann	ual Hydrograph
Percent Com	plete:	>99 %		
Base Flow In	dex.	0.46	1000 84010 C yde	at Daldowie ,
Mean Flow:		48.445 m ³ /s	500	
95% Exceed	ance (Q95);	9.758 m ³ /s	d. da. J	Mark Name
70% Exceed	ance (Q70):	17.58 m ³ /s	i fatta.	
50% Exceed	ance (Q50):	28.22 m ³ /s	§100-	մես Մի քի
10% Exceed	ance (Q10).	112.8 m ² /s	%100- 5 8 80 00 1 1 1	[4] [4]) [4]
5% Exceeda	nce (Q5):	157.2 m ³ /s	* լ կվչ	ių(r.√
Download	Data		10	hupping

© 2020 JKCE4

Gauged daily flow (GDF) data is evailable for

Gaugeo Daily Flox

Heat Vision 2030

HEAT

- Supply temp 80° C or higher
- Cascading of multiple units of 5 Mega Watt peak
- River can support > 200 Mega Watt

In business to secure a better future

UK National River Flow Archiv

What makes District Energy

happen? Over & Over

R In business to

What makes District Energy happen over & over? Low Risk Predictable

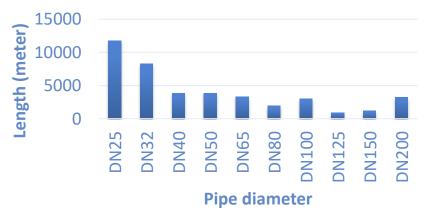
Repeatable

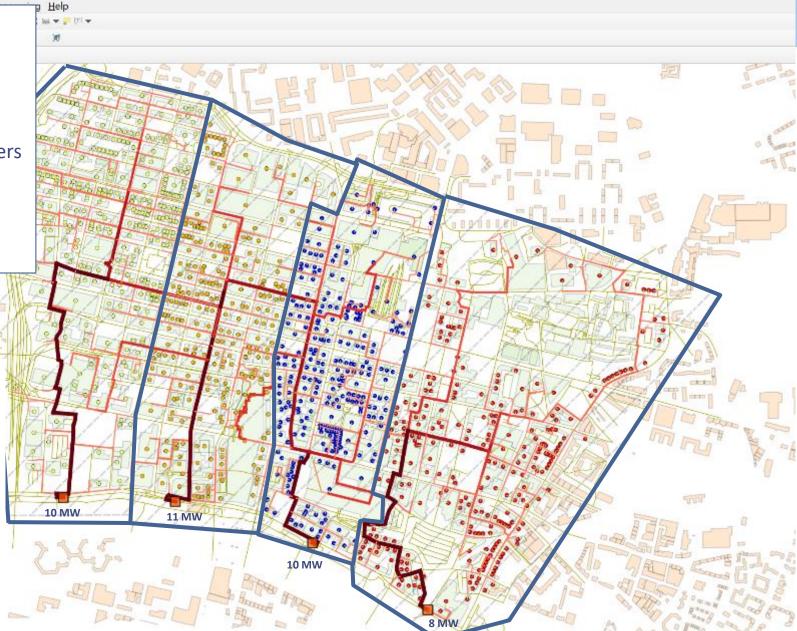
R.O.I.

Scenario 2: multiple sources at the river

District Heating

- 4 Heat sources, approx 10 Mega Watt peak per source
- Providing heat to 4 different clusters (groups of buildings)
- Supply temperature: 80°C
- Return temperature: 50°C


Q Comsof Heat Designer - QGIS


Distribution network:

- Steel pipes
- Operating at 16 bar
- 80 °C Supply and 50° C Return temp
- 4 Heat pumps supply heat to 4 separate clusters
- Clusters size: 10, 11, 10 and 8 MW
- Total public trench length: 46639 meters
- Total network linear heat density: 2 MWh/m

Distribution pipe network

STAR

Deployment cost calculation - pipes

- Pipe cost per metergleployment
- Costs per meter pipe network include:
 - Excavation
 - Supply & return pipe materials
 - Welding & installation costs
 - Expansion loops and extra material
 - Refill and repair of top layer
 - Project management overhead

definitions	
Nominal	Cost (£/m
diameter	Material cost
DN25	£1,000.00
DN32	£1,000.00
DN40	£1,000.00
DN50	£1,000.00
DN65	£1,000.00
DN80	£1,500.00
DN100	£1,500.00
DN125	£1,500.00
DN150	£1,500.00
DN200	£3,000.00
DN250	£3,000.00
DN300	£3,000.00
DN350	£3,000.00
DN400	£3,000.00
DN450	£3,000.00
DN500	£3,000.00
DN600	£3,000.00

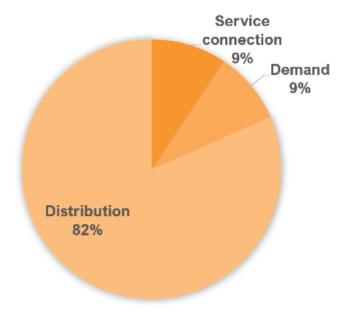
Deployment cost calculation

Glasgow

- Heat source cost (Heat pump)
 - £450,000 GBP per 1MW Heat pump
- Heat delivery unit cost

Activation Type	Lower Bound	Unner Pound	Cost
Activation Type	Lower Bound	Upper Bound	Material
Power	1	50	£3,000.00
Power	50	100	£10,000.00
Power	100	400	£20,000.00
Power	400	1000	£50,000.00
Power	1000	00	£75,000.00

Network Deployment cost


Glasgow

Calculation Information

Area Name	Glasgow PoC
Design Rules	Rules2
Number of Homes	1141
Household Density (hh/sqkm)	0.00

	Cost Breakdown	
	Network Cost	%
Service connection	£7.911.875,18	99
Demand	£7.635.000,00	99
Distribution	£69.072.754,04	829
Total	£84.619.629,23	1009

Results	
Total Cost of Project	£84.619.629,23
Total Public trench length (m)	46.639,43
Total Network linear heat density (MWh/m)	2,445
Deployment Cost per Home	£74.162,69

Generated by Comsof Heat

conclusions

- Need to expand teams technical input
 - Vital Energi More accurate deployment cost information (NOT YET FACTORED IN THIS WORK)
 - IES More accurate load modelling (NOT YET FACTORED IN THIS WORK)
- Economical lessons learnt (hints)
 - Less than £100M for city centre network deployment with an energy usage of approx 200GWhr/year
 - £2.5M over 40 years £2.5M / 200GWhr → 1.25 p/kWh for CAPEX payback (@0% cost of capital)
 - 200 GWhr / yr creating 15000 T of CO2 emissions or
 - 0 T CO2 with heat from heat pumps with clean power supply (15,000T if grid)
 - Cost of heat at 1/3 of cost electricity
 - − If electricity 6p/kWh → cost of heat : 2p/kWh
 - − If electricity 9p/kWh → cost of heat : 3p/kWh
 - So heat at 3.25p/kWh to 4.25p/kWh (assumes zero cost of capital)

- Simple economics won't make this happen. We need surety of offtake

So DH will work if we create surety of offtake.....but how

- Work with cities to create a concession zone
- Work with cities to educate around NOx / CO2
- Set NOx/CO2 phase down targets >3% per year
- Issue improvement notice if 9% behind OR

• Join DH; setup as a "fairopoly"

What is a fairopoly.....

www.fairopoly.com we tend to use more heat when it's windiest 3:30/5:24

- With improvement notices avoided in favour of DH...
- bring private wire power on a big scale @ <£60/MWh
 - Build the new paradigm of energy

• #CLEANHEAT

Let's get on and do it.....

David Pearson

