
The Net Zero North Sea Vision

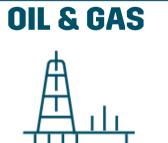
Luca Corradi 08/09/2021

2020 - 2050 **A UK Perspective**

Power Demand

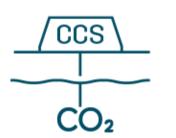
Resource

WIND


95-250 GW

~100 GW

>150 GW

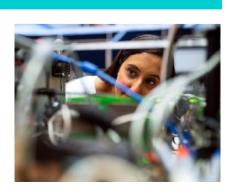


> 270 TWH GH2 17 - 270 TWH BH2

78 Gtonne

米

Reimagining the UK's energy sector


£125bn opportunity

Up to £125bn per year in total economic activity in the UK energy offshore sector by 2050, depending on the path selected

Technology

A reimagined North Sea will drive blue and green hydrogen production at scale and create a significant role for marine renewables, while driving improvements to storage

Offshore wind

Commitment to significant expansion of floating and fixed offshore wind, combined with anticipated cost savings, will boost energy security, reduce dependence on imported energy and increased production of green hydrogen

Carbon capture

Cost-effective, widespread deployment of carbon capture and storage will enable the broadest range of technologies and industries to contribute to the zero-emissions vision

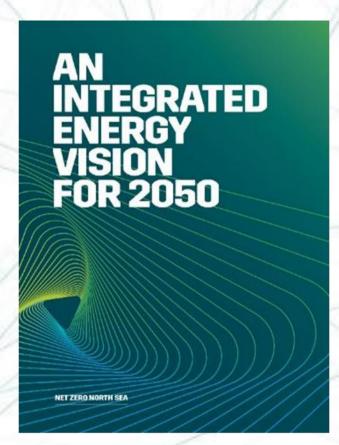
Reduced costs

Innovation can drive increased affordability across a number of technologies and ultimately reduce the cost of energy to consumers in the net zero world

232,000 jobs

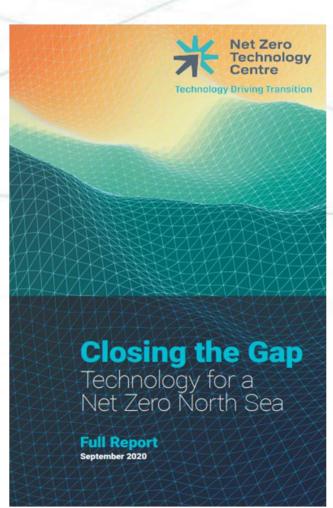
232,000 offshore energy jobs are possible by 2050, up from 140,000 direct and indirect today; the severity of the predicted employment downturn this decade can be considerably reduced

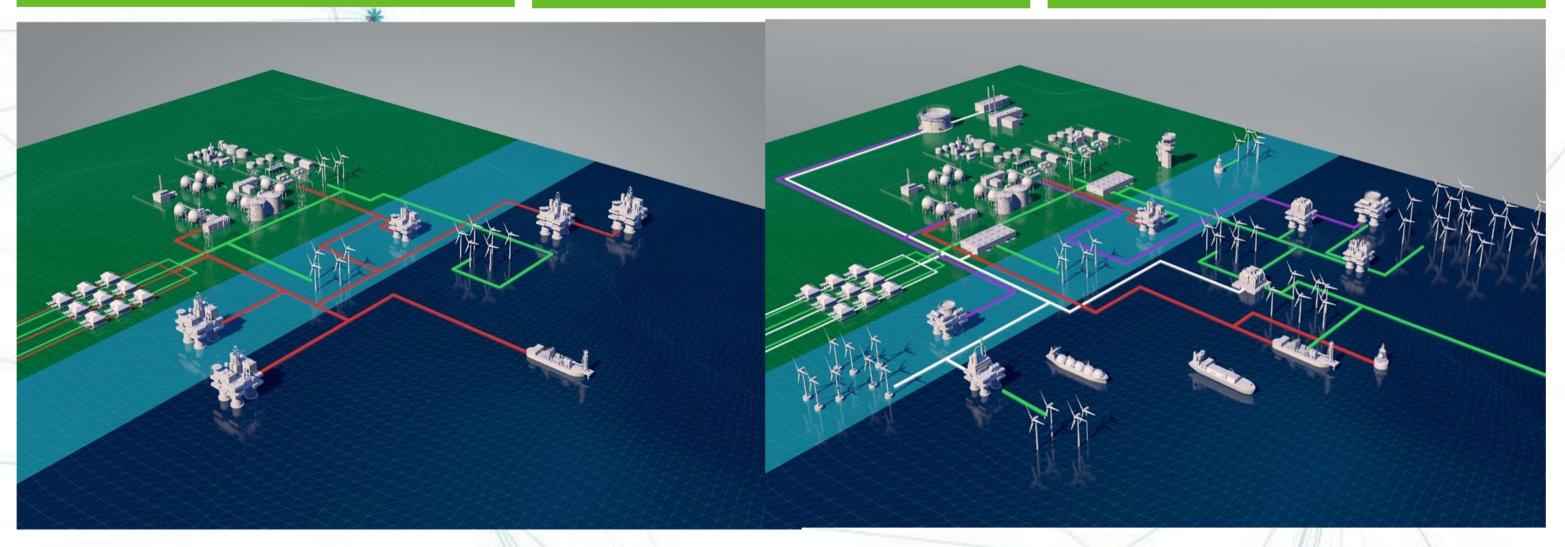
UK hydrocarbons will continue to fulfil necessary UK energy demand through net zero domestic production, reducing reliance on imports and reducing emissions through technologies such as electrification



Exports

The opportunities of net zero will multiply beyond UK borders: green hydrogen as a commodity, carbon sequestration as a service, the transfer of hard-won skills and expertise to new markets


An integrated energy future



Up to **£416bn** investment required over next **30 years**

Potentially contribute £125bn per year to the UK economy by 2050.

Support more than 230,000 jobs.

Closing the technology gaps:

Offshore wind; Hydrogen; Carbon, capture & storage; Oil & Gas electrification and transportation

2050 Scenarios At a Glance

The size of the challenge is

	TODAY 2020	EMERGING 2050	PROGRESSIVE 2050	TRANSFORMATIONAL 2050
Summ	> Blue and green hydrogen not commerce > Gas import dependency rising year on > Floating wind trials in UK waters > CCS under development but not opera	> Large reliance on imported gas > Negligible role for floating wind	 > Blue and green hydrogen play a major role > Moderate reliance on gas imports > Large role for floating offshore wind > Significant requirement for CCS 	 > Green hydrogen plays a major role > Low reliance on imported gas > Crucial role for floating wind > Moderate requirement for CCS
Econo	E40bn Total Ecomomic Impact	£80bn Total Ecomomic Impact	£100bn Total Ecomomic Impact	£125bn Total Ecomomic Impact
Jobs	140,000 Direct & Indirect	113,000 Direct & Indirect	158,000 Direct & Indirect	232,000 Direct & Indirect
Import	UKCS -45%	UKCS ~45%	UKCS **mports ~30%	UKCS ~10%
Invest	ment £10bn Average historic CAPEX p.a	£6.5bn Average CAPEX p.a	£9.4bn Average CAPEX p.a	£13.4bn Average CAPEX p.a

Offshore energy mix

Offshore wind	32TWh	Electricity 289 TWh	380 _{TWh} 101 _{TWh}	380 _{TWh}
Hydrogen	27 TWh	270 _{TWh}	195 _{TWh} Green 75 _{TWh}	17 _{TWh} 253 _{TWh}
Oil & Gas	MPORTS OII Gas 640 Twh 700 Twh	1MPORTS 270Twh 801Twh	72% OII Gas 270 TWh 555 TWh	OII Gas 270 TWh 333 TWh
Carbon Capture & Storage (CCS)	O MTCO ₂ /year	140 MTCO ₂ /year	113 MTC0 ₂ /year	81 MTCO ₂ /year

Technology priorities

Innovation cost savings

Carbon Capture & Storage	Modular retrofittable carbon capture solutions	Modelling geological behaviour of CO ₂	Direct air / seawater capture	£1.3bn	Cost Reduction 13%
Blue Hydrogen	Enhanced SMR reactor membranes and catalysts	Alternative production methods eg, plasma pyrolysis	High-capacity sorbents more durable at high temperatures	£6.5bn	Cost Reduction 32%
Offshore Wind	Reduced cost floating wind foundations	Innovative floating wind mooring systems	Dynamic cabling solutions to reduce downtime	£97bn	Cost Reduction 24%
Green Hydrogen	Electrolyser catalyst innovation	Seawater electrolysis	Subsea electrolyser solutions incorporating compression	£55bn	Cost Reduction 61%

TECHNOLOGY FOR 2050

We have identified a range of critical technologies, which include but are not limited to:

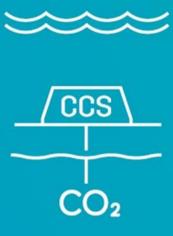
Oil & Gas

Ammonia or other low-carbon fuelled turbines

Marine hydrogen transport solutions

Plaform electrification (AC/DC cabling solutions)

Subsea electrification cost reduction



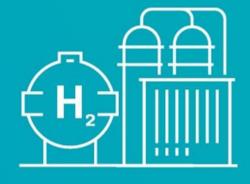
Offshore Wind

UK-specific floating wind foundations

Innovative floating wind mooring systems

Dynamic cabling solutions to reduce wind downtime

Carbon Capture & **Storage**


Modelling of geological behaviours of CO2

Modular, retrofittable carbon capture solutions

Direct air/seawater capture

CO2-compatible well plug and abandonment techniques

High-capacity sorbents durable at high temperatures

Hydrogen

Seawater electrolysis

Electrolyser catalyst innovation

Subsea electrolyser systems incorporating compression

Improved efficiency of existing SMR and ATR technology

Enhanced SMR reactor membranes and catalysts

Alternative blue hydrogen production methods

Inter-seasonal hydrogen storage

One Net Zero Solution Centre

3 clear programmes

Emissions Reduction Offshore Energy 4.0 **Integrated Energy System**

Oil and gas are key part of the future energy mix, but we must decarbonise operations

We need investment and innovation in new affordable clean offshore power and storage solutions to create an integrated energy future

Digitisation and automation are critical for a net zero future, to reduce emissions and unlock the potential of a smart basin

Alliances and partnerships

Energy Transition Alliance (ETA)

5 year roadmap. 5 initial projects.

5 year partnership

across IRTOs.

One

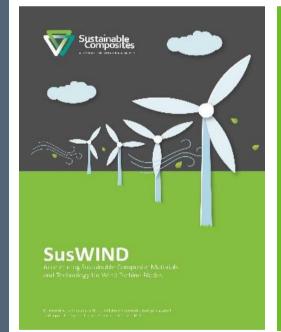
with AIRTO

Mapping Net Zero initiatives

North

One North Sea

Collaboration project with TNO (NL) to map energy integration projects across borders.


NECCUS

Scotland Net Zero Roadmap (SNZR)

Collaborative project led by NECCUS and funded by ISCF-Innovate UK based on Hydrogen and CCS.

End2End Hydrogen

Review of technology gaps and innovation needs for hydrogen production and distribution with partners OREC, HVMC, ESC, ATI, APC.

SusWIND Program

Accelerates Sustainable Composite Materials and Technology for Wind Turbine Blades.

Department for Business, Energy & Industrial Strategy

Hydrogen Advisory Council (HAC)

Deployment Roadmap for 2020s, led by BEIS

Technology Driving Transition