CONNECTED ENERGY

- MMM

INNOVATIVE BATTERY STORAGE SYSTEMS

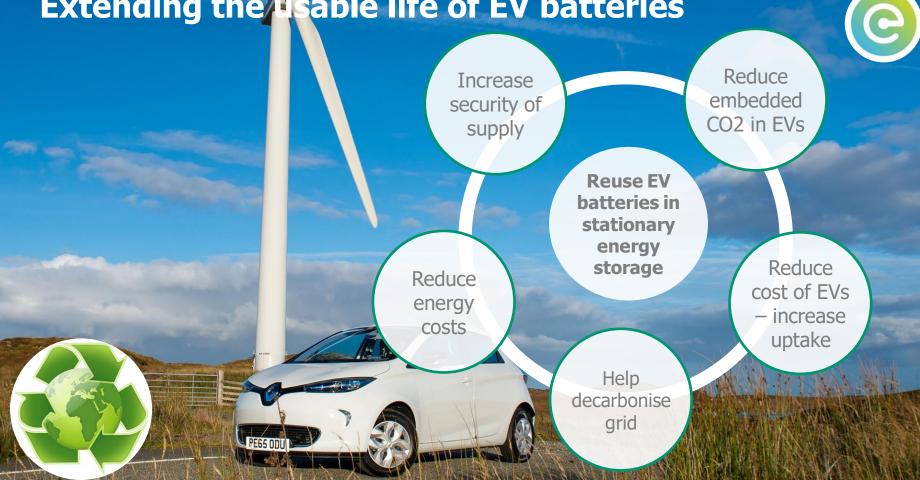
Who we are.....

World leading innovators in energy storage & circular economy

- Dedicated to the design, manufacture and operation of world class energy storage systems.
- Management team with mature experience from automotive and energy sectors.
- Aiming to achieve ambitious international growth

Hardware and software system integrators

Manufacturing supply chain developers


Sales, operation and customer service providers

Project development and finance

What we do? Extending the isable life of EV batteries

Why we do it? Market opportunity

The benefits of using 2nd life batteries and further harnessing their embedded natural resources is immense when compared with manufacturing new batteries

Projected Energy Storage Growth (GWh) ~f140b 400 (GWh) Battery storage 350 possible solely from 2nd life 300 batteries ~£85b 250 200 2nd Life Battery Supply Growth CAGR 44.9% 150 Global annual demand for energy storage 100 ~£18b 50 0 2022 2024 2025 2026 2027 2028 2029 2030 2018 2019 2020 2021 2023 Global Storage Demand

- £18bn global energy storage market by 2023
- By 2029 the global demand for energy storage could be met by 2nd life EV batteries

Note 1: Global Storage Demand – BNEF, Nov 2017: https://about.bnef.com/blog/global-storage-market-double-sixtimes-2030/ Note 2: EV battery Forecast – IEA, 2018: https://lnkd.in/fMaCYwa

Leveraging development to date

CE has developed its technology with a focus on creating and proving the building blocks for scale up.

It has established international partnerships to enable international expansion.

2015-18

Control and

monitoring

Value -Added

CONNECTED ENERGY Advanced Energy Storage Solutions

Multi-battery scale up and validation

CONVER

2021

Modularisation Multi-MWh deployment

Supply chain integration

Batteries as a Service

Scale-up to large systems

Large system development & operation

OEM integration

optimisation

Forward battery supply

Additional OEM battery integration

Market

compliance

Battery flow


2025

Using EV 2nd life batteries: an attractive solution

- High Safety level
- Technical performance
- Affordable: lower price than a new battery
- Better environmental impact of the EV
- Less use of resources
- Less emissions
- Ability to work the batteries harder for
- additional revenue benefit

6

Benefits of using a battery

- Provide extra flexibility to your site
- A source of revenue when there is spare time
- Allows for growth of sites and an EV network

Going a second step further:

Reduce Peak Loads

From a joint study with Lancaster University, a 300 kW E-STOR system could save an extra 144t CO_2e when compared to a first life system

Trade Energy

Generate Revenue

Integrate EV Charging Infrastructure

EV charger management

ALLEGO: Active battery management of rapid chargers on a constrained network

- Site has a maximum import size of 35 kW
- Installed 2 x 50 kW rapid chargers installed
- Will cause a trip and blackout to the service station
- No option for reasonable grid upgrades or generation
- The battery dischargers to provide support power when needed
- When there is capacity available the battery recharges

NATURAL SITE LOAD VS MANAGE SITE LOAD (KW)

22.00

22:00

18.00

18:00

20.00

20:00

80.00

60.00

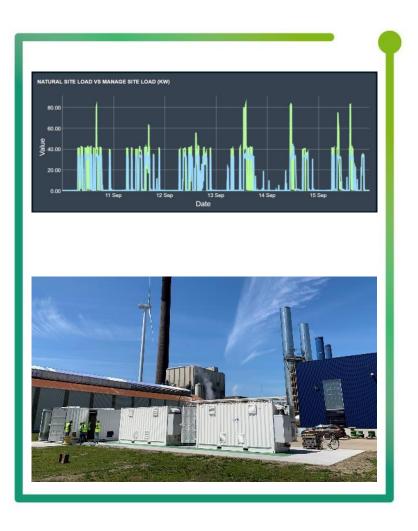
alue 40.00

20.00

Optimise Onsite Renewables

Solar Capture

- This graph shows how a sites energy load has been changed by an E-STOR charging and discharging. The green line shows the natural site load that would have been used if the E-STOR had not been operating on the site. Whilst the blue line shows the actual output.
- With solar panels installed, periods of export would have occurred during these three days (seen by the 'Natural Site Load' being negative).
- The E-STOR system charges from this surplus energy. This charge energy is then used to reduce the peaks of energy usage on site (Combing both Renewable Enhancement and Import Constraint Management)



Reduce peak loads

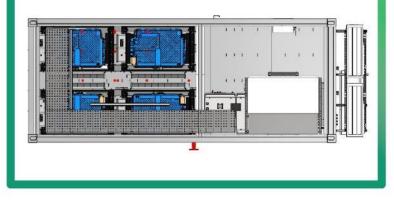
Import management

- In cases where a limit to the amount of power can be drawn from the grid, an E-STOR is able to provide the shortfall required.
- The E-STOR charges the battery when there is available load and discharges into the site knocking off the peak loads.
- A predetermined limit can be agreed and can be managed with CE BESS and thus remove any breaching charges or need for additional capacity.

TRADE ENERGY + GENERATE REVENUE

GRID Services operating modes

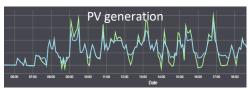
- Frequency response service. The power output of a system will track the fluctuations in the National Grid.
- Through an aggregator the BESS is traded and can generate long term revenue stream
- State of charge will generally remain close to 50% so that it is able to both charge and discharge to meet the demands of the grid.
- With an aggregator the customer can benefit from a number of different dynamic revenue streams that all support national grid imbalance.

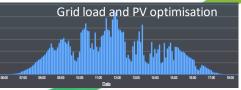


SYSTEM SIZING

300kW / 360kWh

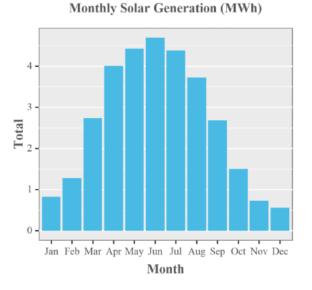
- 20' container modules
- 300kW & 360kWh (Renault Kangoo)
- BtM systems
- Site integration
- Multi-function multi-value stream



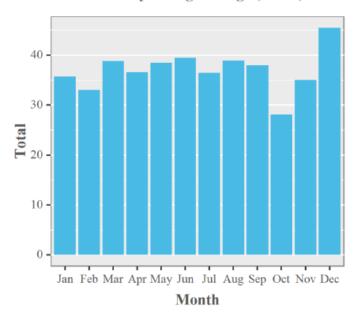

Managing EV charging load – Flagship project with Dundee City Council & Swarco

Project 1 - 60kW / 90kWh Project 2 – additional 600kW/720kWh

- Location: Princess Street, Dundee
- EV charging Hub with solar PV canopy
- Services:
 - Renewable Energy optimisation
 - EV charging
 - Time of Use energy shifting
- Solar canopy size: 22kW
- No. of EV chargers 5x 50kW DC/ 40kW AC triple chargers and 3x 7kW chargers
- Commissioned: June 2018

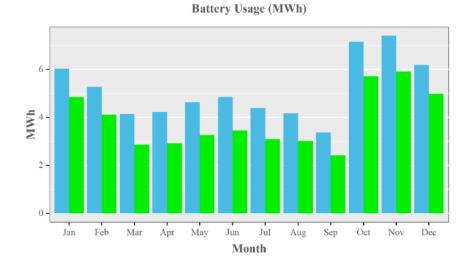


Solar Generation



Month	Total (MWh)		
Jan	0.83		
Feb	1.28		
Mar	2.74		
Apr	4.01		
May	4.42		
Jun	4.70		
Jul	4.38		
Aug	3.73		
Sep	2.69		
Oct	1.51		
Nov	0.74		
Dec	0.56		
-	31.58		

Monthly Charger Usage

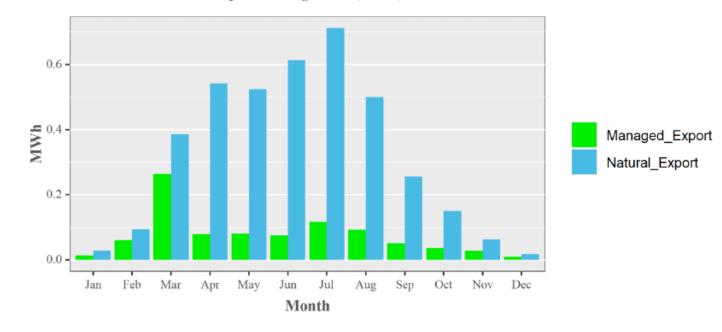


Monthly Charger Usage (MWh)

Month	Total (MWh)		
Jan	35.72		
Feb	33.02		
Mar	38.81		
Apr	36.59		
May	38.47		
Jun	39.48		
Jul	36.45		
Aug	38.89		
Sep	37.99		
Oct	28.08		
Nov	35.03		
Dec	45.50		
-	444.03		

Battery Usage

Month	Charged (MWh)	Discharged (MWh)	Efficiency (%)
Jan	6.03	4.85	80%
Feb	5.28	4.12	78%
Mar	4.14	2.87	69%
Apr	4.23	2.93	69%
May	4.63	3.27	71%
Jun	4.85	3.46	71%
Jul	4.39	3.10	71%
Aug	4.17	3.03	73%
Sep	3.37	2.43	72%
Oct	7.15	5.73	80%
Nov	7.41	5.91	80%
Dec	6.19	4.99	81%
-	61.86	46.69	75%


Charged Discharged

Solar Utilisation

Export Management (MWh)

Increasing Solar Utilisation by 9%

Month	Natural Export (MWh)	% of Solar Used	Managed Export (MWh)	% of Solar Used
Jan	0.03	97%	0.01	98%
Feb	0.09	93%	0.06	95%
Mar	0.39	86%	0.26	90%
Apr	0.54	86%	0.08	98%
May	0.52	88%	0.08	98%
Jun	0.61	87%	0.08	98%
Jul	0.71	84%	0.12	97%
Aug	0.50	87%	0.09	98%
Sep	0.26	90%	0.05	98%
Oct	0.15	90%	0.04	98%
Nov	0.06	91%	0.03	96%
Dec	0.02	97%	0.01	98%
-	3.89	88%	0.91	97%

Dundee Story so far

- Solar generation over the last year (total of 31.58MWh)
- EV Charging demand over the last year (total of 444.03MWh)
- Battery charging and discharging usage over the year (total of 45.66MWh of additional solar has discharged to the EV chargers)
- The storage has increased the Solar utilisation for the year from 88% to 97% (reducing wasted export from 3.89MWh to 0.91MWh)
- The KVA demand from the EV chargers is being supported to bring it under 150KW (as much as the battery can provide)
- New Clepington Road site 2x 300kW/360kWh systems supporting solar PV & EV chargers due to be installed July 2022.
- Potential Bell Street site 2x 300kW/360kWh

Business Case for battery storage

- 60kW/90kWh battery storage system scalable in size to meet EV demand
- Solar yield increase by 9%
- 45MWh of solar used for EV charging that would have otherwise been spilled out to the grid
- There is no requirement for expensive infrastructure cost upgrades due to the battery system monitoring and controlling 150KVA import
- Battery storage system is an enabler for additional EV infrastructure with high infrastructure cost upgrades
- Battery storage system utilises renewable assets on site before using carbon intensive grid electricity

Thank you

Nigel Dent Head of Sales Connected Energy Limited

Nigel.dent@c-e-int.com 07961562727

www.c-e-int.com