

(Almost) Zero Head Hydro

- Hydrokinetic turbines generate power from the kinetic energy in flowing water
 - Very much like wind turbines generate power from moving air
- Modern development began in late 1970s
 - First testing on River Thames by Reading University/ITDG
 - Initial projects in Sudan to irrigate crops using power of the Nile during dry seasons
 - Small electricity generating units (250-500W) used for remote communities worldwide

ITDG 1980-82, Juba, Sudan

Amazon Aquacharger Marlec/Thropton ~2000 onwards, various locations

Thropton Energy Services
1993 onwards, various locations

Full Stream Ahead

• Tidal stream technology development: 1990s-today

IT Power 1994, Loch Linnhe, Scotland

Seaflow IT Power/MCT 2003, Lynmouth, England

SeaGen Marine Current Turbines 2008, Strangford Narrows, Northern Ireland

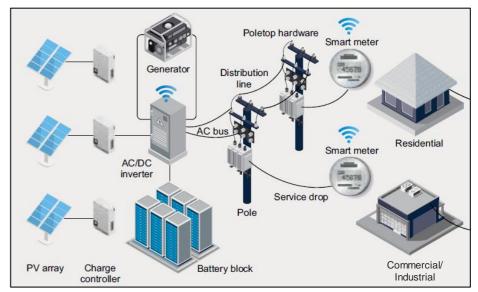
D10 Sabella 2015, Ushant, Brittany

DD100 Nova Innovation 2021, Shetland, Scotland

AR1500 Atlantis Resources 2016, Caithness, Scotland

Plat-I 6.40 Sustainable Marine 2022, Grand Passage, Canada

O2 Orbital Marine2021, Orkney, Scotland

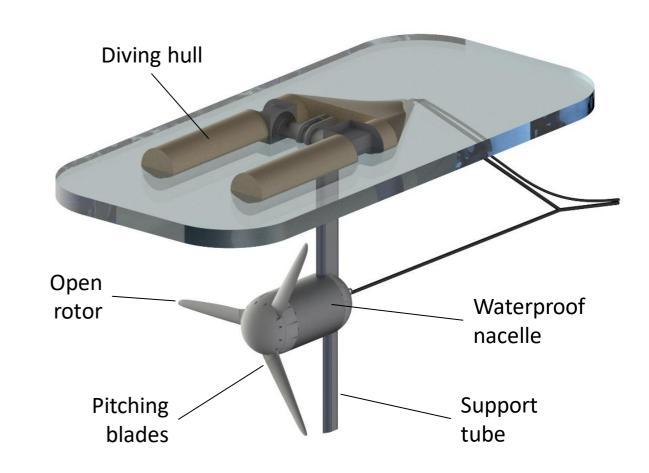


DG100 Minesto 2020, Vestmannasund, Faroe Islands

A Mini Grid Revolution

- In 2015 all UN member states committed to the goal of providing universal clean, modern energy access by 2030 (SDG7)
- 3 main methods: National grid expansion, solar home systems and *mini grids*
- The least-cost solution to reach nearly 500 million people will be to build 210,000 mini grids¹
- "Typical" Mini Grid:
 - 50-100 kWp solar PV
 - 200-500 kWh battery energy storage: *largest single cost*
 - AC distribution and metering for 200-800 connections (including households and commercial/industrial users)
 - Total investment: US\$ 0.5-1.0 million

KH3000 Turbine


Plug and Play integration with mini grids

Via standard PV inverters and charge controllers

A human-scale solution

- Transport by 4x4 or motorised canoe
- No cranes or specialist installation boats required
- Maintenance in a typical vehicle garage
- Applicable to rivers of moderate size

Turbine Characteristics	
Rated power	3 kW
Flow velocity @ rated power	2.5 ms ⁻¹
Rotor diameter	1.2 m
Overall height	1.85 m
Total mass	130 kg

Our Journey to Commercialisation

Where we are now:

2019 Company founded

2020 Research and prototype turbine design

2021 Proof of concept procurement, and

preliminary testing

2022 Performance testing and initial integration

with mini grid hardware

Where we are going:

Pitch system development. Full integration with PV inverters and mini grid controllers

2023 UK in-river trials

2023/4 Pilot projects overseas

2024+ Commercial B2B sales

